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1. Introduction

Simantics data model is based on RDF-like semantic graphs. The data model
is semi-structural i.e. there is no separation of concepts and instance data: all
concepts are modeled also using graph representation.

This document is organized as follows:

∙ Sections 2–7 define the semantics for the basic queries.
∙ Sections 8–11 define when the semantic graph is valid and mechanisms to

add new integrity constraints.
∙ Sections 12–17 define concepts whose exact meaning depends on the Siman-

tics platform implementation.
∙ Section 18 defines a graphical language for specifying ontologies.
∙ Section 19 describes common ontology development conventions.
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2. Semantic graphs

2.1. Informative definition. Semantic graph is a graph whose nodes are called
resources and edges statements. In addition, some resources are associated with
values. A statement is defined by three resources: subject, predicate and object.
Each statement of the semantic graph can be thought as a statement of a fact in
natural language, for example, (PI123,PartOf ,HE456) can be read as “PI123 is a
part of HE456.” In graph theoretic terms, a statement is an edge that goes from
its subject to its object and its predicate is the color of the edge.

2.2. Formal definition. Let ℛ be the set of all resources. Resources do not have
any internal structure in this specification, only identity. Different implementations
may choose to represent resources in different ways, for example as integers. Let
ℬ<! be the set of all finite byte sequences. We define a semantic graph G as a pair
(SG , V G), where SG is a set of statements SG ⊆ ℛ3 and V G is a partial function
V G : ℛ → ℬ<! that associates resources with byte sequence encoding the value
attached to the resource.

We abbreviate (a, b, c) ∈ SG as ⟨a, b, c⟩G . For each resource b, we define a binary
relation

bPRel,G = {(a, c) ∣ ⟨a, b, c⟩G}
and partial unary function

bPFun,G(a) = c, if there exists a unique c such that ⟨a, b, c⟩G .
For the rest of the specification, we fix a semantic graph G and drop it usually from
superscripts.

3. Values

3.1. Informative definition. Databoard specification [2] defines data values, data
types and their binary and ascii encodings. Data types are also data values of data
type DataType. Other data types used in this specification are 32-bit signed integers
(Integer) and Unicode strings (String).

The values are attached to resources encoded as byte sequences. We specify in
section 7 how the data type of the value is defined.

3.2. Formal definition. Let V be the set of all values and T the set of all data
types as defined in [2]. Let enc: T ×V → ℬ<! be the binary encoding function for
data values such that if T is the data type of v then enc(T, v) is the byte sequence
that encodes v.

We can now define a partial function ValGT : ℛ → V that gives a value attached
to a resource, if its type is T . It is defined as

ValGT (r) = v ⇐⇒ V G(r) = s and enc(T, v) = s.

Note that ValGT (r) may be undefined for two reasons: there is no value attached
to r or the byte sequence encoding the value is not compatible with data type T .

4. Unique resource identifiers
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4.1. Informative definition. Unique resource identifier (URI) is a standard way
to refer to a resource. In Simantics, URIs are encoded with three resources:
RootLibrary, PartOf and HasName. The URI of RootLibrary is http:/.
If resource c is a part of p (i.e. ⟨c,PartOf , p⟩) and the URI of p is U , then the URI
of c is formed by concatenating U , the character ’/’ and URI-encoded name of c.
The name of a resource is the string value of the literal attached to the resource
with HasName-relation.

All resource names in this document, excluding RootLibrary, refer to resources
whose URIs are formed by appending the name to

http://www.simantics.org/Layer0-1.0/.

For example, the URI of the resource PartOf is

http://www.simantics.org/Layer0-1.0/PartOf.

4.2. Formal definition. The URI of a resource is defined formally by the following
recursive function

URI(r) =

⎧⎨⎩
”http : /” if c = RootLibrary,

URI(PartOfPFun(r)) + ”/” + otherwise

encode(ValString(HasNamePFun(r)))

Function ’encode’ percent-encodes characters that are illegal or reserved in URIs
as specified in [1].

A resource doesn’t have an URI if any of the partial functions used in the defi-
nition is undefined. Additionally a resource that is on a cycle of PartOf relation
don’t have an URI.

Two resources may have the same URI, if they have the same name and the
same parent. This kind of semantic graph is invalid.

5. Instantiation and inheritance

5.1. Informative definition. Both types and relations have their own subtype
and subrelation hierarchies. Immediate supertypes are related with Inherits and
immediate supertypes with SubrelationOf. A type t inherits another type t′ if
there is a chain of Inherits statements from t to t′. Subrelation hierarchy is defined
similarly.

A resource is defined to be an instance of some type with InstanceOf relation.
If a resource is instance of a type, it is also an instance of all of its supertypes.
Additionally a resource inherits all types from its supertypes or superrelations.

We have not tried to form an exact philosophical view about what types and
instantiation are. However, types form the basis for interpretating the content in
the semantic graphs.
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5.2. Formal definition. We write t <T t′ if t inherits t′ and r <R r′ if r is a
subrelation of r′. Relation <T is the transitive closure of InheritsPRel and <R is
the transitive closure of SubrelationOfPRel. We write i : t when i is an instance
of type t. The relation is formally defined as

i : t ⇐⇒ ∃i′, t′ ∈ ℛ.(i = i′ ∨ i <T i′ ∨ i <R i′) ∧ ⟨i′, InstanceOf , t′⟩ ∧ t′ ≤T t

6. Assertions and derived statements

6.1. Informative definition. In addition to the statements that are directly as-
serted (i.e. belong to the set SG), a type can also assert statements to its instances.
Together these statements form the set of derived statements. If a resource r is an
instance of a type that Asserts an assertion and the assertion HasPredicate p
and HasObject o, then we derive a statement (r, p, o). So all asserted statements
are copied from types to their instances. This basic mechanism has one exception:
if asserted relation is functional and it is defined in some subtype or in the instance,
the statement is not copied to the instance.

6.2. Formal definition. We define first the set of all statements asserted in types:

A = {(t, p, o) ∈ ℛ3 ∣ ⟨t,Asserts, a⟩, ⟨a,HasPredicate, p⟩, ⟨a,HasObject, o⟩}.

Let ⊥ be a special unused resource. It is used to mark statements that are
defined directly in resources. Let <∗T be the extension of <T such that ⊥ <∗T t for
all resources t ∕= ⊥. Define (t, p, o) ≺ (t′, p′, o′) if t <∗T t′ and there exists a resource
p0 such that p0 : Function, p ≤R p0 and p′ ≤R p0. If s ≺ s′ we say that s inhibits
s′.

The idea that assertions of functions in subtypes inhibit the assertions in super-
types is formalized by the following function:

filter(X) = {(t, p, o) ∈ X ∣ there is no (t′, p′, o′) ∈ X such that (t′, p′, o′) ≺ (t, p, o)}

We define the set of all derived statements for a resource s as

Ds = filter({(⊥, p, o) ∣ ⟨s, p, o⟩} ∪ {(t, p, o) ∈ A ∣ s : t}).

The set of all derived statements is

D = {(s, p, o) ∈ ℛ3 ∣ (t, p, o) ∈ Ds}.

Finally, we can define a relation

⟨⟨s, p, o⟩⟩ ⇐⇒ ∃p′ ∈ ℛ.p′ ≤R p ∧ (s, p′, o) ∈ D

that contains all derived statements and their superstatements (i.e. a statement
whose predicate is a superrelation of the predicate of the original statement and
whose subjects and objects are same).
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We have also new versions of relations and functions:

bRel = {(a, c) ∣ ⟨⟨a, b, c⟩⟩}

and partial unary function

bFun(a) = c, if there exists a unique c such that ⟨⟨a, b, c⟩⟩.

7. Literals

7.1. Informative definition. We left it open in section 3 how the data types of
the values are encoded. We define now that derived HasDataType statements
are used to attach the data type to the literal.

7.2. Formal definition. We define partial functions Value: ℛ → V and DataType: ℛ →
T that return the associated value and data type of the literal:

DataType(r) =ValDataType(HasDataTypeFun(r))

Value(r) =ValDataType(r)(r).

8. Validity

The semantic graph is valid if none of its integrity constrains are violated. There
are three possible strategies for maintaining an integrity constraint:

(1) Allow only such primitive operations on semantic graph that don’t break
the constraint.

(2) Validate the graph when the write transaction is committed. Rollback if
the graph is invalid.

(3) Allow invalid graphs but report the problems as issues to the user.

In the last two strategies, the implementation has to cope with invalid graphs:
in (2) only during write transactions and in (3) also during read transactions.

In this specification, we do not define when and how the integrity checks are done
or how they are reported. The following is the list of integrity constraints related
to the mechanisms presented in the previous sections. It doesn’t contain domain
and range restrictions or cardinality restrictions of the relations. In subsequent
sections, we add more constraints.

8.1. Predicates of statements have to be relations. The most straightforward
way to formalize this constraint is

⟨⟨s, p, o⟩⟩ → p : Relation

However the constraint is easier to implement with the combination of the fol-
lowing constraints:

⟨s, p, o⟩ → (p = IsWeaklyRelatedTo ∨ ∃p′.⟨p,SubrelationOf , p′⟩)
(t, p, o) ∈ A→ p : Relation

The second constraint will be checked as a range restriction of the relation HasPred-
icate and so only the first constraint requires special validation logic.
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8.2. Two resources may not have the same URI. Again, the direct formal-
ization is:

URI(a) = URI(b)→ a = b

but it is easier to check for all resources p that all c such that ⟨p,ConsistsOf , c⟩
have different names. We should require this condition even if p doesn’t have a
URI.

8.3. A resource has a value if and only if it is a literal. This condition is
written as

V (r) is defined↔ r : Literal

8.4. The value has to match the data type definition. This condition can be
written as

V (r) is defined→ Value(r) is defined

8.5. Inheritance hierarchy does not have cycles and all types inherit En-
tity. The first constraint says that the directed graph InheritsPRel is acyclic. As-
suming it holds, the second condition can be written as

r : Type→ ∃r′.⟨r, Inherits, r′⟩ ∨ r = Entity.

Note that if r inherits something that is not a type, the graph is invalid because of
the range restriction of Inherits.

8.6. SubrelationOf hierarchy does not have cycles and all relations are
subrelations of IsWeaklyRelatedTo. This is completely analogous to the pre-
vious constraint.

9. Inverses

9.1. Informative definition. A relation may have an inverse relation. If it has,
for all its statements there have to be also an inverse statement whose predicate is
the inverse relation and whose subject and object have been swapped. Inverse rela-
tions are useful in queries where one tries to find all subjects with known predicate
and object. A relation is called symmetric if it is its own inverse.

The subrelation hierarchy of a relation and its inverse have to match: If a relation
is a subrelation of another relation with an inverse, it must have an inverse that is a
subrelation of the inverse of the superrelation. Also domain and range restrictions
that will be defined in the next section have to match.
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9.2. Formal definition. Inverse relation mechanism is defined with certain con-
straints. Assuming that ⟨p, InverseOf , p′⟩, we have:

⟨s, p, o⟩ → ⟨o, p′, s⟩
⟨p,SuperrelationOf , q⟩ → ∃q′.(⟨q, InverseOf , q′⟩ ∧ ⟨p′,SuperrelationOf , q′⟩)

⟨p,HasDomain, t⟩ → ⟨p′,HasRange, t⟩
⟨p,HasRange, t⟩ → ⟨p′,HasDomain, t⟩

We do not require that derived statements have inverses.

10. Relation constraints

10.1. Informative definition. Relation can be defined to connect instances of
certain types: the domain and range of the relation. Also its cardinality can be
restricted: a Function may have only one derived statement per one subject and
a TotalFunction must have exactly one such statement.

10.2. Formal definition. The constraints for the concepts are defined formally as

⟨⟨p,HasDomain, t⟩⟩ ∧ ⟨⟨s, p, o⟩⟩ → s : t

⟨⟨p,HasRange, t⟩⟩ ∧ ⟨⟨s, p, o⟩⟩ → o : t

p : Function ∧ ⟨⟨s, p, o⟩⟩ ∧ ⟨⟨s, p, o′⟩⟩ → o = o′

p : TotalFunction ∧ ⟨⟨p,HasDomain, t⟩⟩ ∧ r : t→ ∃o.⟨⟨s, p, o⟩⟩

11. Type constraints

11.1. Informative definition. Types may contain additional integrity constraints
that refine the constraints specified in relations.

A PropertyDefinition constraints the use of one relation pointed by Con-
cernsRelation with the type. Restriction HasCardinality restricts the number
of (derived) statements having the relation as predicate. Restriction HasRange
restricts the type of the objects of such statements.
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11.2. Formal definition. Assume t is a type, r is its instance (r : t), d is a
property definition such that ⟨⟨t,HasPropertyDefinition, d⟩⟩ and p is relation
such that ⟨⟨d,ConcernsRelation, p⟩⟩. The constraints for the concepts are defined
formally as

⟨⟨d,HasRange, t′⟩⟩ ∧ ⟨⟨r, p, o⟩⟩ → o : t′

⟨⟨d,HasCardinality, c⟩⟩ → ∣{o ∣ ⟨⟨r, p, o⟩⟩}∣ ∈ range(c),

where range(c) is the set of integers in the IntegerRange c.

12. Tags

Tags are a way to encode unary relations to semantic graphs. If relation is a tag,
it can be used only in statements whose subject and object are the same resource.

Layer0 ontology defines the following tags:

12.1. Abstract. A type or relation can be tagged Abstract. An abstract type
may not be directly instantiated. An abstract relation may not be used directly in
statements. Formally:

¬(⟨⟨t,Abstract, t⟩⟩ ∧ ∃r.⟨r, InstanceOf , t⟩)
¬(⟨⟨p,Abstract, p⟩⟩ ∧ ∃s, o.⟨s, p, o⟩)

12.2. Final. A type or relation is tagged Final when it must not be inherited.

12.3. Enumeration. A type can be tagged Enumeration to indicate that it has
only a fixed number of instanes all defined in the same ontology. All instances of
the enumeration must be PartOf the type.

12.4. Deprecated. Any concept can be tagged Deprecated if it supports some
deprecated mechanism or is replaced by other concepts. Deprecated concepts should
not be used anymore and they will be removed in the future major revisions of the
ontology.
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13. Relation hierarchy

13.1. IsWeaklyRelatedTo. The base relation for all other relations. It has no
other semantics.

13.2. IsRelatedTo. Used to specify which parts of the graph are reachable. Re-
sources that are not reachable can be garbage collected. More formally, a re-
source r is reachable, if there exists a sequence of resources: r0, . . . , rn such that
r0 = RootLibrary and rn = r and for all i < n, ⟨⟨ri, IsRelatedTo, ri+1⟩⟩. An
unreachable can be removed (i.e all its statements are removed) any time between
transactions.

13.3. DependsOn. If a statement of the resource is added or removed or the value
of the resource is changed, the transaction that modified the resource generates a
change event on the resource. Relation IsDependencyOf tells how the change
event is propagated. If change event happends on r and ⟨⟨r, IsDependencyOf , r′⟩⟩,
change event is also raised on r′.

13.4. IsComposedOf. If a resource is owned by another resource, its existence is
tied to that resource and it should be removed when its owner is removed. This
corresponds to composition in UML.

14. Predefined literal types

Layer0 defines the following types inheriting Literal. In the second column of
the table is the data type that the type asserts.
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Resource Data type
Boolean Boolean

Byte Byte

Integer Integer

Long Long

Float Float

Double Double

String String

BooleanArray Boolean[]

ByteArray Byte[]

IntegerArray Integer[]

LongArray Long[]

FloatArray Float[]

DoubleArray Double[]

StringArray String[]

Variant Variant

IntegerRange { min : Optional(Integer), max : Optional(Integer) }

15. Organizing data

∙ Library
∙ Ontology

16. Annotating data

∙ HasLabel
∙ HasDescription
∙ HasComment

17. Ordered sets

Ordered set is a way to write ordered data to the semantic graph. Ordered set
itself is a relation inheriting HasNext. The ordered set is encoded as a circular list
containing the set resource and the elements of the set. The subsequent elements
of the list are connected with the ordered set relation. Here is an example:
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18. Graphical ontology definition language

The basic building blocks of the graphical ontology definition language are nodes
and arcs between them. A node represents always a resource. If no type, supertype
or superrelation is given for the resource, it inherits Entity by default. In this way
nodes are by default types.

An edge with open arrowhead tells that a type inherits another type.

In this example, A inherits B.
An edge with closed arrowhead defines a relation with certain domain and range.

If domain or range is Entity or corresponds to the domain or range of the super-
relation, it is not explicitly written to the graph.

In this example C is a relation with domain A and range B.
The label of the edge contains the name of the relation. If the relation is Func-

tion, it is indicated with [0..1] after the name of the relation. If the relation
is TotalFunction, it is indicated with [1]. If the relation has specially named
inverse, it is written to the label after /-character. Also the inverse may have its
own cardinality restrictions, for example ConsistsOf / PartOf[0..1]. By nota-
tion ⟨relation name⟩/-, it is explicitly indicated that the relation does not have an
inverse.

Another way to specify relations is to give them in the attribute section of the
type:

This indicates that C is a relation with domain A and range B.
By default, the relation in the attribute section is TotalFunction. It can be

specified as normal relation by writing C[*] : B and as Function by C[0..1] :
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B. Also the notation C[1] : B can be used to emphasize that the relation is a total
function.

If the relation is already defined either by an edge or in the attribute section of a
supertype of the type, the attribute section may contain further type restrictions.
They are written in the same way as above.

Types and tags of the resources are indicated in the same way as stereotypes in
UML:

Depending on whether the resource in guillemets is type or tag, the resource is
instantiated or tagged. Multiple types and tags can be specified separating them
with comma. If a type is given for the resource and it is not a type, the resource is
not inherited from Entity by default.

[Should we use notation A : B in the node labels for typing?]

19. Conventions used in Simantics ontologies

19.1. Names. The names of the concepts begin with an uppercase letter and con-
tain only letters and numbers. The names with multiple words are written in
CamelCase convention.

Names of relations are usually verbs.

19.2. Inverses. If a relation has a specially named inverse, it has the same parent
as the relation itself. By default, the inverse relation is named as ⟨URI of the
relation⟩/Inverse.
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